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Amplitude equation at ionization instability and the onset of turbulence in a neon glow discharge

B. Bruhn, B.-P. Koch, and P. Jonas
Institut für Physik, Ernst-Moritz-Arndt-Universita¨t Greifswald, Domstrasse 10a, 17487 Greifswald, Germany

~Received 7 May 1998!

We investigate the bifurcations of ionization waves from the homogeneous stationary state of the positive
column in a neon glow discharge. In the weak nonlinear region the wave dynamics is approximated by an
amplitude equation of the Ginzburg-Landau type with complex coefficients and an additional integral term.
This nonlocal term describes the influence of the external circuit on the ionization waves. Conditions are
derived for the band of Eckhaus stable wave solutions. The dependence of the complex coefficients on the
plasma parameters is discussed and used to classify the solution manifold of the amplitude equation. Raising
the gas pressure from 130 Pa up to 720 Pa, the intermittency, bichaos, and amplitude turbulence regions are
visited successively. Some of these theoretical results are supported by numerical calculations for selected
parameter values.@S1063-651X~98!13309-3#

PACS number~s!: 52.35.2g, 52.80.Hc, 05.45.1b
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I. INTRODUCTION

Driven by external forces, a spatially extended syst
very often undergoes a transition from a uniform state
complex spatiotemporal behavior, i.e., one observes sta
ary periodic patterns, wave excitation, and different forms
spatiotemporal chaos@1#. Such behavior is also observed
the positive column of noble gas discharges, e.g., in n
discharges, if the discharge currentI is varied. These pattern
formations can be explained by the complicated interplay
diffusion, convection, conduction, production, and loss p
cesses. Mostly the nonlinear dynamics of ionization wave
investigated on the basis of a hydrodynamical model, wh
also includes the effect of the axial electric field@2#. To
obtain satisfactory agreement with the experimental resu
not only the dynamics of the charge carriers but also
influence of excited atoms has to be taken into account. F
thermore, the external circuit characterized by a voltageU
and an Ohmic resistanceRa has to be considered and th
yields a global coupling term.

It is well known that in neon discharges also turbulen
may be observed in certain parameter regions@3,4#. Recent
measurements@5# have shown that the transition to turb
lence may also appear near the stability boundary of the
mogeneous equilibrium. This motivates us to use mod
methods of bifurcation theory, which properly work near t
critical parameter values, where the instability sets in.

In two recent papers@6,7# we have systematically inves
tigated the bifurcations developing from the homogene
column and their dependence on the strength of the glo
coupling term. By changing the Ohmic resistance we c
realize supercritical and subcritical Hopf bifurcations as w
as generalized Hopf bifurcations. Moreover, different typ
of Hopf-Hopf bifurcations@8# can be shown to exist. Th
corresponding calculations use center manifold and nor
form theories and describe the instability of one and t
modes, respectively. These methods are well suited for
short positive column. In the case of a long column, wh
many modes become unstable simultaneously near the
cal current, the description by an equation of the Ginzbu
Landau type becomes relevant. The complex coefficient
this equation can by calculated from the basic equations
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ing multiple scale techniques. For ionization waves near
Pupp critical current@9# Bekki @10# derived an amplitude
equation in the form of a nonlinear Schro¨dinger equation.

In our case of global coupling the usual compl
Ginzburg-Landau equation~CGLE! is supplemented by a
third-order integral term

]A

]t
5mA2vg

]A

]z
1b

]2A

]z2
1cA* A21g

A

l E0

l

A* A dz,

~1.1!

with the real bifurcation parameterm, the group velocityvg ,
and complex coefficientsb,c,g. In the case of realb,c,g Eq.
~1.1! was discussed by Elmer@11#. Equation~1.1! describes
the slow spatiotemporal development of the complex am
tudeA of a plane wave near a supercritical Hopf bifurcatio
Qualitatively, the same types of solutions exist as in
simple CGLE. Nevertheless, the modifications caused by
global coupling are described.

Currently, there is a growing interest on the influence
global coupling on spatiotemporal pattern formation. D
namical systems ranging from gas discharges@12# and semi-
conductor systems@13# to chemical@14,15# and biological
@16# systems have been investigated. To study the effec
global coupling various models such as coupled map latt
@17#, coupled Ro¨ssler oscillators@18#, reaction-diffusion sys-
tems@19#, and extended Ginzburg-Landau systems@20# were
used. Specific phenomena related to global coupling in os
latory systems are the breakdown of synchronization cau
by defects, the spontaneous formation of phase domains,
the development of standing waves.

This paper is organized as follows. In Sec. II the ba
equations are described and briefly discussed. Section
contains the derivation of the amplitude equation. Some
sults concerning plane waves and their stability are discus
in Sec. IV. In particular the modifications resulting from gl
bal coupling are emphasized. Results that describe the
ization instability in a low-pressure neon discharge are d
cussed in Sec. V. The dependence of the parametersb,c,g
on the gas pressure is calculated also in Sec. V. Furtherm
the correctness of the predictions with respect to ordered
turbulent behavior, respectively, is verified by numerical c
culations.
3793 © 1998 The American Physical Society
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II. BASIC EQUATIONS

The physical model equations we are using in this pa
are based on a hydrodynamic description that takes into
count the equations of continuity for ions, electrons, me
stable atoms, and the electron energy balance equation.
system is completed by Maxwell’s equations describing
quasistatic electric field. In order to make this set of eq
tions analytically tractable, some physically motivated si
plifying assumptions are used. Now we briefly sketch so
basic approximations; however, the complete discussion
be found in@6#.

The assumption of quasineutrality reduces the numbe
dependent variables by one. This assumption is justified
cause the wavelength of the considered ionization phen
ena is much larger than the Debye radius of the plas
concerned. Motivated by experimental results in cylindri
tubes, we describe a discharge with cylindrical symme
and therefore all dependent quantities are functions of
axial coordinatez and the radius. By means of an averagi
with respect to the radial dependence our problem becom
one-dimensional one. This averaging is based on the assu
tion of a radial dependence of the densities in terms o
zeroth-order Bessel function. After a rescaling of the ba
equations in terms of dimensionless variables, the time
rivative of the electron energy balance equation is multipl
by a small factor and is also neglected. Furthermore, we
into consideration the external current circuit by the bala
equation

U5RaI ~ t !1E
0

L

E~z,t !dz, ~2.1!

whereRa is the external resistance,L denotes the length o
the positive column,E(z,t) is the axial component of the
electric field, andI (t) is the total current.

In the next step one considers the homogeneous and
tionary solutions that describe the equilibrium states of
positive column@6#. Indeed such solutions exist for the sy
tem of balance equations by compensating for the differ
production and loss terms. LetN(z,t), M (z,t), T(z,t), and
E(z,t) be the radial averaged densities of ions, metasta
atoms, electron temperature, and the axial component o
electric field, respectively. The equilibrium state is des
nated byN0 ,M0 ,T0 ,E0 ,I 0 . We introduce the relative devia
tions from the equilibrium state
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u5
N2N0

N0
, m5

M2M0

M0
, v5

T2T0

T0
,

~2.2!

w5
E2E0

E0
, j 5

I 2I 0

I 0

and define the dimensionless independent variables

z85
E0

T0
z, t85bi

E0
2

T0
t,

whereT0 is measured in units of volts andbi denotes the
mobility of the ions. Furthermore, we omit the prime on t
variablesz8,t8 hereafter for notational convenience. The
making an expansion of the nonlinear terms up to the th
order with respect to all field variables, the set of basic eq
tions obtains the principal structure

]

]t
~ T̂XW !5L̂XW 1N2

W ~X,X!1N3
W ~X,X,X!1•••, ~2.3!

whereXW denotes the field vector andT̂ is a projection opera-
tor

XW 5S u

m

v

w

D , T̂5S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D .

Moreover,L̂XW indicates the linear part

L̂XW 51
a

]2u

]z2
1h1u1h3m1b

]2v

]z2
1h2v

D
]2m

]z2
1h4u1h6m1h5v

2d1

]2u

]z2
2u2h4m2d2

]2v

]z2
1k

]v
]z

2h1v1w1 j

a
]u

]z
1u1b

]v
]z

1w2 j

2
~2.4!

andN2 ,N3 stand for the quadratic and cubic nonlinearitie
respectively, which are given by
N2
W51

av
]2u

]z2
1~a1b!

]u

]z

]v
]z

1bu
]2v

]z2
1r1uv1r2v21r3um1r4vm1r5m2

r6uv1r7v21r8um1r9vm1r10m
2

22d1v
]2u

]z2
2d2~u1v !

]2v

]z2
2d3

]u

]z

]v
]z

2d2S ]v
]zD 2

1 jw1k j
]v
]z

2h1uv

2h2v22h4um2h5vm

av
]u

]z
1bu

]v
]z

1uw

2
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and

N3
W5S s0umv1s1uv21s2v31s3mv21s4vm2

s5uv21s6v31s7mv21s8vm2

2d1v2
]2u

]z2
2d2uv

]2v

]z2
2d3v

]u

]z

]v
]z

2d2uS ]v
]zD 2

2h2uv22h3v3

2h5uvm2h6mv2

0.
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Taking into account the definition of the currentj @6#,

j 52
R

Ral E0

l

w dz, ~2.5!

where l 5LE0 /T0 is the dimensionless length of the di
charge andR5E0L/I 0 its equilibrium resistance, Eq.~2.3! is
a coupled system of partial integro-differential equatio
hk , hl , sm , and rn are coefficients that result from th
series expansion of the production and loss terms up to t
order ~cf. @6,7#!. In contrast to the kinetic coefficient
a,b,d j ,k, these parameters depend on the actual equ
rium solutionN0 ,M0 ,T0 ,E0 . The solutions of Eq.~2.3! also
depend on the boundary conditions at the ends of the pos
column. From the experimental point of view it is not qui
clear what boundary conditions have to be chosen to
proximate a real positive column. On the other hand,
results in@6,7# have shown that the bifurcation behavior
almost independent of the special boundaries at least in
limit of long discharges. In this contribution we use period
boundary conditions and it also has the advantage tha
calculations are simplified.

In the first step we are interested in the stability proper
of the equilibrium discharge, i.e., we consider the lineariz
system

]

]t
~ T̂XW !5L̂XW . ~2.6!

A plane wave ansatz yields the dispersion relation that ca
solved by means of numerical methods. Figure 1 shows a
of instability curves~or neutral curves! of the p waves pa-
rametrized by the pressurep0. Below the actual curve the
positive column is stable. Crossing the curve by increas
the discharge currentI 0 , a supercritical Hopf bifurcation
takes place~cf. @7#! and one observes ionization waves.
characteristic property is the local minimum of the instabil
curve at a critical wave numberkc . More precisely, we have
a two-dimensional manifold of local minima by variation
the pressurep0 and the radiusr 0 of the discharge. It is well
known that the wave dynamics in the neighborhood of
local minimum can be well approximated by an amplitu
equation of the Ginzburg-Landau type. In order to find su
an equation, there are two essential assumptions:~a! the in-
stability curve near the local minimum is approximated by
parabola and~b! the nonlinearity is given by the Hopf nor
mal form equation, i.e., by a third-order term. In this sense
.
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Ginzburg-Landau–type amplitude equation represents
normal form of the wave dynamics in the weak nonline
region.

III. DERIVATION OF AN AMPLITUDE EQUATION

Let the discharge currentI 0 be the control parameter an
I c its critical value at the minimum of the instability curve
Then we shall consider a natural small parameter of the p
lem « defined through

«25
I 02I c

I c
, ~3.1!

which is a measure of the distance from the bifurcation po
In order to find the amplitude equation, we use the meth
described in@21#. The wave vectorXW is expanded in a powe
series with respect to«

XW 5 (
a51

`

«aXW ~a!5«XW ~1!1«2XW ~2!1••• ~3.2!

and, moreover, each of these terms is expanded in a Fo
series by

XW ~a!5 (
n52`

`

XW n
~a!~t,j!exp i ~knz2vnt !. ~3.3!

FIG. 1. Instability curves ofp waves parametrized by selecte
pressure values~the radiusr 051 cm andk is the dimensionless
wave number!.
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Here kn5nk1 and vn5nv1 are multiples of the basic pai
(v1 ,k1)5(vc ,kc), i.e., (v1 ,k1) correspond to the critica
mode that becomes unstable at the minimum of the insta
ity curve. Furthermore, the Fourier coefficientsXW n

(a) repre-
sent weakly varying functions of space and time, i.e., th
depend on the stretched variables

t5«2t, j5«~z2ct!, ~3.4!

wherec is a free real parameter, which must be fixed co
sistently in the course of our calculations. Because the w
vectorXW is a real one, the coefficientsXW n

(a) have to fulfill the
conditions

XW n
~a!5~XW 2n

~a!!* , ~3.5!

where the asterisk denotes the conjugate complex. As the
step one has to take into consideration that the constantshk ,
hl , sm , rn , D, andR depend on the actual discharge cu
rent I 0 ~see@6# for their definitions!, i.e., if we go into the
instability region, these parameters depend on the ac
value of«. This dependence can be approximated by a T
lor expansion near the critical point (I c ,kc)
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hk5hku0,kc
1hk8u0,kc

«211/2hk9u0,kc
«41•••, ~3.6!

where 0,kc indicates the critical point and the prime stan
for the partial derivative with respect to«2. The same expan
sion is used also for the remaining parameters. Substitu
all these expansions into the basic equation~2.3! and equat-
ing the coefficients of equal powers of« leads to a hierarchy
of linear inhomogeneous equations. The evaluations
straightforward but involve tedious algebra and therefore
report here only selected results.

A. First order of perturbation theory

Because the Fourier modes form an independent sys
of functions, the first order«1 splits into an infinite system o
homogeneous algebraic equations, where the property~3.5!
reduces the interesting mode number ton>0. In the casen
51 this system reads

V̂~k1 ,v1!XW 1
~1!50W , ~3.7!

with the matrix operator
V̂~k1 ,v1!5S ak1
22h12 iv1 2h3 bk1

22h2 0

2h4 Dk1
22h62 iv1 2h5 0

12d1k1
2 h4 h12d2k1

22 ikk1 21

212 iak1 0 2 ibk1 21

D . ~3.8!
s

-

n
rob-
Nontrivial solutionsXW 1
(1) exist for

detV̂~k1 ,v1!50⇒v15v1~k1!, v1PC.

The complex valued functionv1(k1) is the dispersion rela
tion of the linear theory and the instability curves~see Fig. 1!
result from the condition Im(v1)50. Note thatv1 depends
also on the control parameter~3.1! throughhk , hl , sm , rn ,
andD. The corresponding eigenvector is given by

XW 1
~1!5F~j,t!YW ~1!, YW ~1!5S 1

M10

V10

W10

D , ~3.9!

where F(j,t) is an arbitrary amplitude depending on th
stretched variables and the components ofYW (1) can be calcu-
lated by means of

M105
2 iv12A~k1!

B~k1!
,

V105
h4M10121 iak12d1k1

2

d2k1
21 id4k12h1

, ~3.10!

W105212 iak12 ibk1V10.
HereA(k1) andB(k1) are defined by

A~k1!5h12ak1
21

~h22bk1
2!~21 iak12d1k1

2!

d2k1
21 id4k12h1

,

~3.11!

B~k1!5h31
h4~h22bk1

2!

d2k1
21 id4k12h1

.

For the modesXW n
(1) with n>2 one obtains similar systems a

Eq. ~3.7!, but now with a coefficient matrixV̂(kn ,vn).

SinceV̂(kn ,vn)5V̂(nk1 ,nv1) the determinant of this ma
trix cannot be equal to zero. This means thatXW n

(1) for n>2
must be the trivial solution. The analysis of then50 mode
requires special consideration because the integral~2.5! does
not vanish. In@7# we have shown that then50 mode is
stable for a sufficiently large external resistanceRa . There-
fore, we setXW 0

(1)50W as well. The first-order perturbatio
theory must be completed by the adjoint homogeneous p
lem. Taking into account the usualL2 scalar product of four-
dimensional vectors

^YW uXW &5
1

l 8
E

0

l 8
YW †~j!XW ~j!dj,
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where the dagger denotes the adjoint vector@YW †5(YW T)* #
and l 85« l . The adjoint linear problem is

V̂†VW 50. ~3.12!

Its solutionVW is easy to find as

VW 5C~j,t!YW ad
~1! , YW ad

~1!5S 1

M̃10

Ṽ10

W̃10

D , ~3.13!

with the components

M̃105
iv12A* ~k1!

C* ~k1!
, Ṽ1052

h5M̃101h22bk1
2

d2k1
22 id4k12h1

,

W̃1052Ṽ10.

A(k1) is defined by Eq.~3.11! andC(k1) can be written as

C~k1!5h41
h5~21 iak12d1k1

2!

d2k1
21 id4k12h1

.

In Eq. ~3.13! the amplitudeC(j,t) is an arbitrary function
of the stretched variables.

B. Second order

To this order the mode numbersn>3 provide homoge-
neous systems that have only the trivial solution

XW n
~2!50W , n>3.

On the other hand, we obtain an inhomogeneous equatio
n52,

V̂~2k1,2v1!XW 2
~2!5F2F2

W ~X~1!!, ~3.14!

whereV̂ is the same matrix as in Eq.~3.8!, but now with the
substitutionk1→2k1 andv1→2v1 . The inhomogeneityF2

W
depends on the first-order solutions. The explicit form of
components is given in the Appendix. The ansatzXW 2

(2)

5F2YW 2
(2) reduces Eq.~3.14! to

V̂~2k1,2v1!YW 2
~2!5F2

W . ~3.15!

Because detV̂(2k1,2v1)Þ0, this system can be solved b
means of Kramer’s rule.

Moreover, forn51 one finds

V̂~k1 ,v1!XW 1
~2!5 i S c

]V̂

]v1
1

]V̂

]k1
D ]

]j
XW 1

~1! . ~3.16!

A comparison with the first-order equation~3.7! shows that
the homogeneous problem associated with Eq.~3.16! always
has a nontrivial solution. Consequently, the inhomogene
problem has nontrivial solutions if a Fredholm alternati
condition is satisfied. Since the adjoint solution is given
Eq. ~3.13!, the solvability condition for Eq.~3.16! can be
written by means of the first-order solutions
for

e

s

y

05
1

l 8
E

0

l 8
C*

]F

]j
djK YW ad

~1!U i S c
]V̂

]v1
1

]V̂

]k1
D YW ~1!L ,

where the second factor^ u & now is an usual Hermitian sca

lar product becauseYW ad
(1) , YW (1), andV̂ do not depend on the

stretched variables. In any case the integral will not be eq
to zero becauseC is an arbitrary function. Therefore, th
scalar factor must be zero

05K YW ad
~1!U i S c

]V̂

]v1
1

]V̂

]k1
D YW ~1!L .

Taking into consideration the formula

05V̂
]

]k1
YW ~1!1S ]v1

]k1

]V̂

]v1
1

]V̂

]k1
D YW ~1!, ~3.17!

which can be found by differentiation of the first-order equ

tion V̂YW (1)50W with respect tok1 , one obtains

05S c2
]v1

]k1
D ^YW ad

~1!uT̂YW ~1!&,

where]V̂/]v152 i T̂ is used andT̂ is the projector in Eq.
~2.3!. It is easy to show that the scalar product does
vanish near the instability curve and therefore

c5
]v1

]k1
5vg , ~3.18!

i.e., the free parameterc introduced in Eq.~3.4! must be the
group velocity of the wave at the critical point. Inserting E
~3.18! into Eq. ~3.16!, the explicit solution of the inhomoge
neous problem~3.16! is easy to find by taking into accoun
Eq. ~3.17!,

XW 1
~2!52 i

]F

]j

]

]k1
YW ~1!. ~3.19!

It must be emphasized that this is not the most general s
tion of the inhomogeneous problem because an arbit
term F̃YW (1) that solves the homogeneous equation can
added. However, the ‘‘new’’ amplitudeF̃ cannot be fixed in
our perturbation theory up to third order. Nevertheless,
term is important in a higher-order perturbation theo
which we plan to show in a forthcoming paper.

The last equation of second order is related to then50
mode. We find

V̂~0,0!XW 0
~2!1

R

Ra

nW

l 8
E

0

l 8
w0

~2!dj5F* FFW 0~Y~1!!,

~3.20!

where

XW 0
~2!5S u0

~2!

m0
~2!

v0
~2!

w0
~2!

D , nW 5S 0

0

1

21

D ,
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and the components of the inhomogeneityFW 0 can be found in
the Appendix. In order to solve Eq.~3.20! we make the an-
satz

XW 0
~2!5F* FYW 0

a1
1

l 8
E

0

l 8
F* F dj YW 0

b , ~3.21!

where the following vector components are used:

YW 0
a5S u11

a

m11
a

v11
a

w11
a

D , YW 0
b5S u11

b

m11
b

v11
b

w11
b

D . ~3.22!

Inserting the ansatz into Eq.~3.20! yields two systems of
inhomogenous equations for the determination ofYW 0

a andYW 0
b

as

V̂~0,0!YW 0
a5FW 0 , V̂~0,0!5S 2h1 2h3 2h2 0

2h4 2h6 2h5 0

1 h4 h1 21

21 0 0 21

D ,

~3.23!

and

L̂YW 0
b52

R

Ra
w11

a nW ,

L̂5S 2h1 2h3 2h2 0

2h4 2h6 2h5 0

1 h4 h1 211R/Ra

21 0 0 212R/Ra

D . ~3.24!

Because detV̂(0,0)Þ0, the solution of Eq.~3.23! can be
found by means of Kramer’s rule. The componentw11

a forms
the inhomogeneity of the second system~3.24! and this sys-
tem can be solved by a standard method too. Note that

matrix L̂ depends on the external resistanceRa and there is

the possibility that detL̂ has zeros at selected values ofRa .
Indeed, such behavior is observed and we report on thi
Sec. V. Moreover, in the limitRa→` Eq. ~3.24! degenerates
to a homogeneous problem that only has the trivial solut

lim
Ra→`

YW 0
b50W .

C. Third order

In this order it is sufficient to examine then51 mode
only. We find

V̂~k1 ,v1!XW 1
~3!52T̂

]

]t
XW 1

~1!1
1

2

]2V̂

]k1
2

]2

]j2
XW 1

~1!

1 P̂XW 1
~1!1T̂vg

]

]j
XW 1

~2!1 i
]V̂

]k1

]

]j
XW 1

~2!

1F* F2~EW 1HW !1
F

l 8
E

0

l 8
F* F dj GW ,

~3.25!
he

in

n

where the vectorsEW 5EW (Y(1), Y(2),Y0
a), HW 5HW (Y(1)), and

GW 5GW (Y(1),Y0
a ,Y0

b) are defined in the Appendix.T̂ is the

projector of Eq.~2.3! and P̂ is the matrix given by

P̂52
]

]«2
@V̂~k1 ,v1!1 iv1T̂#u«50,kc

. ~3.26!

Since the corresponding homogeneous problem@cf. Eq.
~3.7!# has a nontrivial solution, we use the Fredholm so
ability condition as in Sec. III B. Inserting the solution

XW 1
(1) ,XW 1

(2) on the right-hand side and using the adjoint so
tion ~3.13!, this condition reads

05
1

l 8
E

0

l 8
C* H 2

]F

]t
^YW ad

~1!uT̂YW ~1!&

1
1

2

]2F

]j2 K YW ad
~1!U]2V̂

]k1
2

YW ~1!L 2 i
]v1

]«2
F^YW ad

~1!uT̂YW ~1!&

2 i
]2F

]j2 K YW ad
~1!UvgT̂

]

]k1
YW ~1!L 1

]2F

]j2 K YW ad
~1!

3U]V̂

]k1

]

]k1
YW ~1!L 1F* F2^YW ad

~1!u~EW 1HW !&

1
F

l 8
E

0

l 8
F* F dj^YW ad

~1!uGW &J dj,

where we have used̂YW ad
(1)u(]V̂/]«2)YW (1)&50, which can be

proved by differentiation of the first-order equationV̂YW (1)

50. Since this equation must be true for all functionsC, we
obtain

052
]F

]t
1pF1b

]2F

]j2
1cF* F21g

F

l 8
E

0

l 8
F* F dj,

~3.27!

where the coefficients are defined by

p52 i
]v1

]«2U
«50,kc

, b5
i

2

]2v1

]k1
2 U

«50,kc

c5
^YW ad

~1!u~EW 1HW !&

^YW ad
~1!uT̂YW ~1!&

, g5
^YW ad

~1!uGW &

^YW ad
~1!uT̂YW ~1!&

. ~3.28!

Note that we have used some elementary manipulations
are based on differentiation of Eq.~3.17! with respect tok1 ,
taking into account the dispersion relationv1(k1) to obtain
the coefficientb. Of course, Eq.~3.27! is an amplitude equa
tion of the Ginzburg-Landau type modified by an integ
term. A similar term was found by Elmer@11# in a study
concerning the nonlinear and nonlocal dynamics of spati
extended systems. Finally, we return to our original sp
and time variables and introduce the amplitude funct
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«F~j,t!5Ã~z,t !

to obtain

]Ã

]t
52vg

]Ã

]z
1«2pÃ1b

]2Ã

]z2
1cÃ* Ã21g

Ã

l E0

l

Ã* Ã dz.

~3.29!

It must be emphasized that the four coefficientsp, b, c, and
g are complex valued, whereasvg is a real parameter. Let

p5pr1 ipi , b5br1 ibi , c5cr1 ic i , g5gr1 igi ,
~3.30!

where the indexr means real part andi stands for the imagi-
nary part of the complex coefficients. Then we can elimin
the terms;pi and;gi by means of a phase rotation

Ã~z,t !5expS i«2pit1 i
gi

l E0

tE
0

l

Ã* Ã dz dtDA~z,t !

and this yields

]A

]t
52vg

]A

]z
1«2prA1~br1 ibi !

]2A

]z2

1~cr1 ic i !A* A21gr

A

l E0

l

A* A dz. ~3.31!

Of course, one can eliminate the term;vg by means of a
Galilei transformation. Moreover, scaling transformatio
are possible such thatbr→1, cr→21, and«2pr→1. In order
to discuss the limitsbr→0 andcr→0, respectively, we have
not performed this transformation, i.e., Eq.~3.31! is the form
of the amplitude equation studied for the rest of this pap

IV. WAVE SOLUTIONS AND THEIR STABILITY

This section deals with special stationary solutions of
amplitude equation~3.31! and with their stability. In particu-
lar, we look for wave solutions with constant amplitudes
the type

A~z,t !5R exp i @~k2kc!x1f0#, ~4.1!

with

x5z2~vg1u!t, ~4.2!

whereu and f0 are free real parameters andR is the con-
stant wave amplitude. Note thatu can be considered as th
phase velocity of the plane wave~4.1! in the reference sys
tem moving withvg . First we consider the trivial solution
R50, which corresponds to the homogeneous station
positive column of the discharge. It is easy to show that t
solution is unstable against perturbations of the form

dA5dA0exp@ i ~k2kc!x2lt#

if

«2pr.br~k2kc!
2. ~4.3!
e

.

e

f

ry
is

Of course, the instability curve«2pr5br(k2kc)
2 reproduces

the results of the linear theory near the critical point~cf. Sec.
II !.

A nontrivial wave solution withRÞ0 is obtained by in-
serting Eq.~4.1! into the amplitude equation~3.31!. We find

R25
«2pr2br~k2kc!

2

2~cr1gr !
, ~4.4!

u5
«2prci1@bi~cr1gr !2brci #~k2kc!

2

~k2kc!~cr1gr !
, ~4.5!

i.e., the amplitudeR depends on the wave number, whic
clearly shows the nonlinear character of this solution. A r
amplitude exists only if a supercritical bifurcation (cr1gr
,0) takes place at the critical point~cf. @7#!. In this case the
amplitude tends to zero at the neutral curve. Moreover,
wave propagates with a velocity different from the gro
velocity vg as a consequence of the complex coefficients
the amplitude equation. For real coefficients (ci ,bi→0) the
difference vanishes (u→0). From the experimental point o
view only stable waves can be observed and therefore
must study this property of our solution. The stability again
small perturbations is described by the variational equati

]dA

]t
5«2prdA1u

]dA

]x
1~br1 ibi !

]2dA

]x2

1~cr1 ic i !~A2dA* 12A* AdA!

1gr S dA

l E
0

l

A* A dx1
A

l E0

l

~AdA* 1A* dA!dxD ,

where dA(x,t) represents the small perturbation. Inserti
the solution~4.1! for A and taking into consideration th
complex conjugate variational equation by introducing t
complex two-dimensional vector

SW 5S dA

dA* D ,

we obtain

]SW 1

]t
5S br

]2

]x2
2~cr1gr !R

21@u22bi~k2kc!#
]

]xD SW 1

1R2ĈSW 11S bi

]2

]x2
2ciR

212br~k2kc!
]

]xD K̂SW 1

1R2Ĝ
1

l E0

l

SW 1dx, ~4.6!

where the vectorsSW andS1
W are connected by a unitary tran

formation Û(f),

SW 15Û21~f!SW ,

Û5
1

A2
S exp~ if! i exp~ if!

exp~2 if! 2 i exp~2 if!
D , f5f01~k2kc!x,
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which depends on the phase of Eq.~4.1!. The matrix opera-

tors K̂, Ĉ, andĜ are defined by

K̂5S 0 21

1 0 D , Ĉ5S 3cr1gr 2ci

3ci cr1gr
D ,

Ĝ52S gr 0

0 0D .

In order to find the solution of Eq.~4.6!, we make the ansat

SW 1~x,t !5elt@XW cos~qx!1YW sin~qx!#, ~4.7!

whereq is an arbitrary wave numberqÞk2kc andXW ,YW are
constant two-dimensional vectors. Because

1

l E0

l

SW 1dx5H 0 if qÞ0

eltXW if q50,

we have to distinguish between uniform (q50) and nonuni-
form perturbations (qÞ0), respectively. Forq50 we get the
eigenvalues

l150, l252~cr1gr !R
2 ~4.8!

and the corresponding eigenfunctions

dAl1
5 ieif, dAl2

5
cr1 ic i1gr

ucr1 ic i1gr u
el2teif. ~4.9!

dAl1
is a pure phase mode, well known as the Goldsto

branch~cf. @22#!, whereasdAl2
represents a mixed ampl

tude phase mode. In the limitci→0 the eigenfunctiondAl2

becomes the amplitude mode discussed by Elmer@11#.
For nonuniform perturbations (qÞ0) we find a quadratic

equation with complex coefficients

l21~a11 ib1!l1~a01 ib0!50, ~4.10!

where

a152~brq
22crR

2!,

b152q@2bi~k2kc!2u#,
~4.11!

a05q2S ~br
21bi

2!q224br
2~k2kc!

2

1
brcr1bici

cr
~a122brq

2! D2
b1

2

4
,

b05
a1b1

2
12q~k2kc!

br

cr
@2~brci2bicr !q

22cia1#.

A necessary condition for stability (Rel,0) of the constant
amplitude wave~4.1! is

a1.0. ~4.12!

This condition also arises in the limitq→0 because

lim
q→0

a1522crR
2, lim

q→0
b15 lim

q→0
a05 lim

q→0
b050

and the corresponding eigenvalues are
e

l1~q→0!50, l2~q→0!52crR
2. ~4.13!

Thus we find the same discontinuityl2(q50)Þl2(q→0)
as discussed by Elmer@11#, reflecting the fundamental dif
ference between a partial integro-differential equation an
partial differential equation. Since the sign ofa1 is deter-
mined by the parameterscr and (cr1gr) @cf. also Eq.~4.4!#
in the limit q→0, we find the four qualitatively differen
regions listed in Table I.

The casesB andC connected with a subcritical bifurca
tion at the critical point need calculations up to fifth order
saturate the instability. We expect that the system would
lect a new stable state, which would be described by high
order nonlinear terms in the amplitude equation, e.g., b
term of fifth power of the modulated amplitude. Accordin
to Eq. ~4.13!, the wave solutions would be unstable in ca
A; however, as Elmer@11# has shown, this is correct for a
infinitely long system only. If the system has a finite leng
l , a lower limit of the wave numberq exists by qmin
52p/ l and one finds a small window of stable solutio
around the critical point.

In caseD we use a general calculation similar to@23#. As
a consequence of Eq.~4.12!, the stability condition can be
written by means of the cubic polynomial

P~a1!5a1
2Fa1

brcr1bici

cr

1S bi
22br

222
bibrci

cr
Dq224br

2~k2kc!
2G

216~k2kc!
2br

2S q2
brci2bicr

cr
2a1

ci

2cr
D 2

~4.14!

as

P~a1!.0⇔stability. ~4.15!

In case D the waves are stable against arbitrary lon
wavelength disturbances~i.e., q→0) if

lim
q→0

P~a1!54cr
2R4F22crR

2
brcr1bici

cr

24br
2~k2kc!

2S 11
ci

2

cr
2D G.0.

We finally find

«2pr.brF11
2br~cr1gr !

brcr1bici
S 11

ci
2

cr
2D G ~k2kc!

2.

~4.16!

TABLE I. Possible bifurcations depending on the signs of t
parameterscr andcr1gr .

CaseA CaseB CaseC CaseD

cr1gr,0 cr1gr.0 cr1gr.0 cr1gr,0
cr.0 cr.0 cr,0 cr,0
supercritical subcritical subcritical supercritical
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We expect that for finite systems (q→qmin) there are devia-
tions from the condition~4.16!. For such systems the poly
nomial ~4.14! must be analyzed by numerical methods; ho
ever, we have not performed such calculations because
are mainly interested in long discharges. Equation~4.16! de-
fines in («,k) space the band of Eckhaus stable wave so
tions. In contrast to the classical Eckhaus result, where
curvature of the parabola at the critical point is three tim
the curvature of the neutral curve, here we have a varia
curvature depending on the external circuit bygr and on the
plasma parameters bycr ,ci ,br ,bi . In the limit of vanishing
imaginary parts one gets the result of Elmer@11# for an am-
plitude equation with real coefficients and, on the other ha
for gr→0 ~i.e.,Ra→`) Eq. ~4.16! reduces to the stable ban
of the complex Ginzburg-Landau equation@24#. The stability
band shrinks to zero if the denominatorbrcr1bici changes
its sign for a fixed sign ofcr1gr . This is the well known
Benjamin-Feir instability region, which we shall characteri
by the parameter

D5
brcr1bici

cr
<0, ~4.17!

where the equality describes the Benjamin-Feir boundary
this section we have discussed the stability of the cons
amplitude waves only. We expect that the amplitude eq
tion ~3.31! also has solitary wave solutions similar to th
hole solution and the shock-type solution of the comp
Ginzburg-Landau equation@25,26#. On the other hand
Elmer @11# has found solutions with spatially periodic amp
tudes in the limit of real coefficients. In any case the solut
manifold of Eq.~3.31! requires further investigations.

V. DISCUSSION

Compared to our basic equation~2.3!, the amplitude equa
tion ~3.31! is much simpler to handle. Special nontrivial s
lutions and their stability can be discussed. Also numer
calculations can be executed very quickly and precisely.
the information on the special plasma system is contai
within the complex coefficients@cf. Eq. ~3.28! and the Ap-
pendix#. The dependence of these coefficients on the pla
parameters, e.g., on the pressurep0 or on the discharge ra
dius r 0, is not easy to discuss because some intermed
steps such as the solution of inhomogeneous systems~cf.
Sec. II B! must be performed.

Inserting the ansatz

Ã~z,t !5A0~ t !exp@ i ~k2kc!~z2vgt !#

into Eq.~3.29!, one finds the Hopf normal form equation fo
a single oscillating modeA0(t), which contains no deriva
tive and no integral term. The Hopf parameter~i.e., the co-
efficient of the nonlinear termuA0u2A0) at the critical point is
given by the sumc1g. We have calculated this paramet
for a neon discharge of pressurep05200 Pa, tube radius
r 051 cm, and lengthL550.3 cm. A comparison with the
results given in@7# yields the correct value of the Hopf pa
rameter. Discussing the various coefficients in Eq.~3.31!, we
state that onlygr andgi depend on the resistanceRa . There-
fore, Fig. 2 shows the dependence of the nonlinear co
-
we
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cientsgr and gi on the external resistanceRa . Remember
that the coefficientgi can be removed by a simple transfo
mation @cf. Eq. ~3.31!#. As expected,gr andgi tend to zero
asRa increases. One notes two singular cases ofgr . First, at
Ra'26 kV we observe a discontinuity ofgr that arises from
a codimension-2 bifurcation, which, of course, cannot be
scribed by the amplitude equation~3.31!. In this case not
only does a wave solution~4.1! bifurcate from the equilib-
rium at«50, but also the homogeneousn50 mode becomes
unstable~cf. @7#!. Indeed, the discontinuity arises from a ze

of the determinant detL̂ @cf. Eq.~3.24!# and the matrixL̂ just
describes the stability of then50 mode@7#. In Sec. III A we

have assumed that then50 mode is stable~i.e., XW 0
(1)50W ),

which is realized forR/Ra sufficiently small. Therefore, the
amplitude equation~3.31! is applicable only for parameter
that are located on the right-hand side of the discontinuit

The second singularity appears atcr1gr50. Here the bi-
furcation changes from a supercritical to a subcritical o
i.e., the corresponding codimension-2 bifurcation is a gen
alized Hopf bifurcation~cf. @7#!. This case is realized atRa
'65 kV ~cf. Fig. 2!. In conclusion we note that the ampl
tude equation~3.31! may describe modulation phenomen
near the instability border in the discussed plasma system
long as the external resistance is sufficiently large, i
gr /2cr!1. For all sufficiently small values ofcr1gr @i.e.,
cr1gr5O(«2)# one has to taken into account addition
terms in the amplitude equation, such as nonlinear grad
terms, a term with the fifth power of the modulated amp
tude, and additional integral terms. The corresponding c
of degenerate bifurcation problems is discussed by Eckh
and Iooss@28#. The remarkable feature of this study is th
phenomenon of strong pattern selection, which we have
perimentally observed in a neon glow discharge as well@29#.
The calculation of the additional terms in the degenerate c
is in progress.

To discuss the influence of the global coupling term
the plasma system it is important to know the dependenc
the coefficients in Eq.~3.31! on the plasma parameters. U
ing the equations of Sec. III, this task can be solved. Fig
3 shows the curve of the realizedbi /br andci /cr values by

FIG. 2. Dependence of the nonlinear coefficients on the exte
resistanceRa . The parameters arep05200 Pa,r 051 cm, andL
550.3 cm.
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varying the gas pressurep0 and holding the tube radiusr 0

51 cm constant. To make the representation more com
hensible, we have added the known border lines separa
the four regions of different behavior of the CGLE@27#, i.e.,
in the case ofRa→` the intermittency, bichaos, and amp
tude turbulence regimes are visited successively by enlar
the pressure.

In Sec. IV we have calculated the influence of the integ
term on the properties of harmonic waves@see Eq.~4.1!#.
According to Eqs.~4.4! and ~4.5!, a larger value ofgr en-
larges the amplitudeR and the phase velocityu. The latter is
correct for sufficiently small wave numbers only. Where
the Benjamin-Feir stability limit is not altered, the width o
the Eckhaus range of stable wave numbers is magnified
lowering of the external resistance. This can be seen in
4, where the gap of stable wave numbers and its varia
with bi /br is represented@cf. Eq. ~4.16!#. Note that the glo-
bal term in Eq.~1.1! preserves the intrinsic phase invarian
of the CGLE. Probably this is the cause for the absence
the different phenomena observed in the case of other gl
terms@20#.

To verify the most important assertions of this paper,
have made some numerical calculations starting from
basic equations~2.3!. Strictly speaking, we made use of th
completed form of Eq.~2.3!, where the nonlinear productio
and loss terms are taken into account completely, i.e., w
out any power series expansion@7#. To facilitate the com-
parison with the theoretical predictions periodic bound
conditions were used. The length of the column was fixed

FIG. 3. Coefficients of the amplitude equation and the cor
sponding solutions for pressure variation in the interval fro
133 Pa to 718 Pa (r 051 cm and the BF line is the Benjamin-Fe
instability boundary!.
e-
ng

ng

l

s
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n

of
al

e
e

-

y
at

L550 cm and the radius atr 051 cm, respectively. In all
calculations the control parameterI 0 was chosen slightly
above the critical currentI c . In particular the statements re
lated to the appearance of turbulent behavior, which
based on the calculations of the coefficients of the Ginzbu
Landau equation~3.31! and are shown for different pressure
in Fig. 3, are checked. Inspecting this figure, a very gene
prediction with respect to the full system~2.3! can be made:
The behavior should be more turbulent if the pressure
raised. This is what is observed in experiments near the
stability border@5#. This is also confirmed by the numerica
results. For pressures of 133 Pa and 200 Pa, respecti
only traveling waves are observed. Starting at different ini
conditions, the waves with the mode numbersn
532 (133 Pa) andn527 (200 Pa), respectively, are th
only attractors. On the other hand, at 718 Pa only irregu
behavior is observed~cf. Fig. 5!. Figure 5~a! shows the in-
volved space-time diagram of the charge carrier den
u(z,t). To omit possible transient structures the diagra
starts only att515 000 and ends att530 000. To show the
irregular patterns more clearly and to compare with the
havior of Eq. ~3.31! the complex modulation amplitud
A(z,t) is extracted with the help of the complex demodu
tion technique@30#. Furthermore, the data are transformed
a coordinate system moving with velocityvg520.291,
which is the group velocity at the critical point. In Figs. 5~b!
and 5~c! the modulus and the phase gradient ofA(z,t) are
represented. The zigzag motions of localized structures
clearly visible. Their velocity strongly deviates from th
group velocity. In Fig. 5~c! these coherent structures are se
to be unstable. The phase gradient steepens until a phas
~amplitude defect! appears and new left and right movin
objects develop. These objects resemble the homoc
holes investigated recently by van Hecke@26#.

Looking at details, one observes serious differences
tween the qualitative behavior of solutions of Eq.~3.31! and
the basic equations~2.3!, respectively. For example, in th
bichaos regime of Eq.~3.31! ~i.e., at 532 Pa) only quasi
periodic solutions are observed. Amplitude turbulence a
phase turbulence could not be detected in this regime. F
thermore, for lower pressures, as mentioned above, o
traveling waves with one selected mode appear. No interm

-

FIG. 4. Range of stable wave numbers and its variation w
bi /br for different values ofgr /cr and fixed ci /cr526.9 and
«2pr /cr51.
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FIG. 5. Space-time diagram of the charge carrier density in different representations. The parameters arep05720 Pa, I 0

50.778 mA, L550 cm, andr 051 cm. ~a! Density u(z,t) and ~b! and ~c! modulus and phase gradient, respectively, of the data a
complex demodulation and transformation to a system moving withvg .
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tency is found. These strong pattern selection@28# of travel-
ing waves is also observed in the experiments in this p
sure range@29#. We strongly suppose that the discrepanc
observed can be diminished if terms of higher order, i
nonlinear gradient terms and the fifth-order termuAu4 A, are
considered. Moreover, we have done many numerical ca
lations at different pressures for short and medium length
the positive column. We plan to report on the results a
their comparison with experiments in a forthcoming pape
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APPENDIX: DEFINITIONS

In this appendix we list some of our abbreviations a
definitions. We begin with the definition of the coefficien
in Eq. ~2.3!,
s-
s
.,

u-
of
d

he
d
r-

-

d15e~ga2a* !, d25e~gb2b* !,

d352d11d2 , d45eg2b, k5eg,

where

a50.842, b50.281, g51.476,

a* 50.956, b* 51.275, e51.05.

In second-order perturbation theory we have used the vec

FW 2 and FW 0. The corresponding components are denoted
F2( j ), with j 51,2,3,4,

F2~1!5@r122~a1b!k1
2#V101r2V10

2

1r3M101r4V10M101r5M10
2 ,

F2~2!5r6V101r7V10
2 1r8M101r9V10M101r10M10

2 ,

~A1!

F2~3!5@~2d11d21d3!k1
22h1#V10

1~2d2k1
22h2!V10

2 2h4M102h5V10M10

F2~4!5 i ~a1b!k1V101W10,



e
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and for vectorFW 0 ,

F0~1!5r1~V101V10* !1r4~V10M10* 1V10* M10!

12r2V10* V101r3~M101M10* !12r5M10M10* ,

F0~2!5r6~V101V10* !12r7V10* V101r8~M101M10* !

1r9~V10M10* 1V10* M10!12r10M10* M10,

~A2!

F0~3!52h1~V101V10* !22h2V10V10* 2h4~M101M10* !

2h5~V10M10* 1V10* M10!,

F0~4!5 ik1~a2b!~V10* 2V10!1W101W10* .

Next, we list the vector components ofEW , HW , andGW . These
vectors are very important since they determine the nonlin
coefficients of the amplitude equation by Eq.~3.28!. We de-

note the components of the solution vectorYW 2
(2) in Eq. ~3.15!

by

YW 2
~2!5S u20

m20

v20

w20

D .

Then, using Eqs.~3.9! and ~3.22! one finds

E~1!5ak1
2~v2022V10* u202v11

a !

1bk1
2~22v201V10* u202u11

a V10!

1r1~v11
a 1u11

a V101u20V10* 1v20!

12r2~V10v11
a 1V10* v20!12r5~M10m11

a 1M10* m20!

1r3~m11
a 1u11

a M101u20M10* 1m20!

1r4~V10m11
a 1v11

a M101v20M10* 1V10* m20!,

E~2!5r6~v11
a 1V10u11

a 1u20V10* 1v20!

12r7~V10* v201V10v11
a !

1r8~M10* u201m201m11
a 1M10u11

a !

12r10~M10m11
a 1m20M10* !

1r9~V10m11
a 1v11

a M101M10* v201V10* m20!,
ar

E~3!52d1k1
2~v11

a 1v2014V10* u20!22d3k1
2~v201u20V10* !

1d2k1
2~4v201u20V10* 1u11

a V10!

1~d2k1
222h2!~V10v11

a 1V10* v20!

2h1~v11
a 1V10u11

a 1V10* u201v20!

2h4~m11
a 1M10u11

a 1u20M10* 1m20!

2h5~v20M10* 1V10* m201V10m11
a 1M10v11

a !,

E~4!5 iak1~v11
a 2v2012V10* u20!

1 ibk1~u11
a V1012v202u20V10* !

1w11
a 1W10u11

a 1w201u20W10*

and the components ofHW are given by

H~1!5s0~M10V10* 1M10* V101M10V10!1s1~2V10* V101V10
2 !

13s2V10
2 V10* 1s3~2M10V10* V101M10* V10

2 !

1s4~2V10M10* M101V10* M10
2 !,

H~2!5s5~2V10* V101V10
2 !1s7~2M10V10* V101M10* V10

2 !

13s6V10
2 V10* 1s8~2V10M10* M101V10* M10

2 !,

H~3!5~d1k1
22h2!~2V10V10* 1V10

2 !2d3k1
2V10

2

2h5~V10M10* 1V10* M101V10M10!12d2k1
2V10

2

2h6~2M10V10V10* 1M10* V10
2 !23h3V10

2 V10* ,

H~4!50.

Moreover, forGW one finds

G~1!5r1~v11
b 1u11

b V10!12r2V10v11
b 1r3~m11

b 1u11
b M10!

1r4~V10m11
b 1v11

b M10!12r5M10m11
b 2ak1

2v11
b

2bk1
2V10u11

b ,

G~2!5r6~v11
b 1V10u11

b !12r7V10v11
b 1r8~m11

b 1M10u11
b !

1r9~V10m11
b 1M10v11

b !12r10M10m11
b ,

G~3!52d1k1
2v11

b 1d2k1
2V10~u11

b 1v11
b !2h1~v11

b 1V10u11
b !

22h2V10v11
b 2h4~m11

b 1M10u11
b !

2h5~V10m11
b 1M10v11

b !

2
R

Ra
~w11

a 1w11
b !~W101 ikk1V10!,

G~4!5 iak1v11
b 1 ibk1u11

b V101w11
b 1W10u11

b .

Using the results of Sec. III B, it is easy to show that

lim
Ra→`

GW 50W .
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@12# H. Willebrand, T. Hünteler, F. J. Niedernostheide, R. Dohme

and H.-G. Purwins, Phys. Rev. A45, 8766~1992!.
@13# M. Meixner, P. Rodin, and E. Scho¨ll, Phys. Status Solidi B

204, 493 ~1997!.
@14# U. Middya and D. Luss, J. Chem. Phys.100, 6386~1994!.
@15# K. C. Rose, D. Battogtokh, A. Mikhailov, R. Imbihl, E. Enge

and A.M. Bradshaw, Phys. Rev. Lett.76, 3582~1996!.
.

@16# P. C. Matthews and S. H. Strogatz, Phys. Rev. Lett.65, 1701
~1990!.

@17# K. Kaneko, Physica D23, 436 ~1986!; 37, 60 ~1989!; 54, 5
~1991!.

@18# A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Europh
Lett. 34, 165 ~1996!.

@19# M. D. Graham, U. Middya, and D. Luss, Phys. Rev. E48,
2917 ~1993!.

@20# F. Mertens, R. Imbihl, and A. Mikhailov, J. Chem. Phys.99,
8668 ~1993!.

@21# A. C. Newell, Lect. Appl. Math.15, 157 ~1974!.
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