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Amplitude equation at ionization instability and the onset of turbulence in a neon glow discharge
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We investigate the bifurcations of ionization waves from the homogeneous stationary state of the positive
column in a neon glow discharge. In the weak nonlinear region the wave dynamics is approximated by an
amplitude equation of the Ginzburg-Landau type with complex coefficients and an additional integral term.
This nonlocal term describes the influence of the external circuit on the ionization waves. Conditions are
derived for the band of Eckhaus stable wave solutions. The dependence of the complex coefficients on the
plasma parameters is discussed and used to classify the solution manifold of the amplitude equation. Raising
the gas pressure from 130 Pa up to 720 Pa, the intermittency, bichaos, and amplitude turbulence regions are
visited successively. Some of these theoretical results are supported by numerical calculations for selected
parameter value$S1063-651X98)13309-3

PACS numbgs): 52.35-g, 52.80.Hc, 05.45:b

[. INTRODUCTION ing multiple scale techniques. For ionization waves near the
Pupp critical curren{9] Bekki [10] derived an amplitude
Driven by external forces, a spatially extended systenfquation in the form of a nonlinear Schlinger equation.
very often undergoes a transition from a uniform state to_ In our case of global coupling the usual complex
complex spatiotemporal behavior, i.e., one observes statioff2iNZburg-Landau equatiofCGLE) is supplemented by a

ary periodic patterns, wave excitation, and different forms 011h|rd-order integral term

spatiotemporal chad4]. Such behavior is also observed in A aA  PPA A [l

the positive column of noble gas discharges, e.g., in neon —ZﬂA—Ug—+b—2+CA*A2+g—f A*A dz
discharges, if the discharge curréris varied. These pattern at Iz z I Jo

formations can be explained by the complicated interplay of 1y

diffusion, convection, conduction, production, and l0ss proyith the real bifurcation parameter, the group velocity g,
cesses. Mostly the nonlinear dynamics of ionization waves ignd complex coefficients,c,g. In the case of red,c,g Eq.
investigated on the basis of a hydrodynamical model, which1.1) was discussed by EImét1]. Equation(1.1) describes
also includes the effect of the axial electric fidl. To  the slow spatiotemporal development of the complex ampli-
obtain satisfactory agreement with the experimental resultsudeA of a plane wave near a supercritical Hopf bifurcation.
not only the dynamics of the charge carriers but also theQualitatively, the same types of solutions exist as in the
influence of excited atoms has to be taken into account. Fusimple CGLE. Nevertheless, the modifications caused by the
thermore, the external circuit characterized by a voltdlge global coupling are described.
and an Ohmic resistand®, has to be considered and this  Currently, there is a growing interest on the influence of
yields a global coupling term. global coupling on spatiotemporal pattern formation. Dy-
It is well known that in neon discharges also turbulencenamical systems ranging from gas discharded and semi-
may be observed in certain parameter regi@4]. Recent conductor systemgl3] to chemical[14,15 and biological
measurementfgs] have shown that the transition to turbu- [16] systems have been investigated. To study the effect of
lence may also appear near the stability boundary of the haglobal coupling various models such as coupled map lattices
mogeneous equilibrium. This motivates us to use moderfl7], coupled Rssler oscillator$18], reaction-diffusion sys-
methods of bifurcation theory, which properly work near thetems[19], and extended Ginzburg-Landau syst¢@2@] were
critical parameter values, where the instability sets in. used. Specific phenomena related to global coupling in oscil-
In two recent paperf6,7] we have systematically inves- latory systems are the breakdown of synchronization caused
tigated the bifurcations developing from the homogeneoudy defects, the spontaneous formation of phase domains, and
column and their dependence on the strength of the globahe development of standing waves.
coupling term. By changing the Ohmic resistance we can This paper is organized as follows. In Sec. Il the basic
realize supercritical and subcritical Hopf bifurcations as wellequations are described and briefly discussed. Section llI
as generalized Hopf bifurcations. Moreover, different typescontains the derivation of the amplitude equation. Some re-
of Hopf-Hopf bifurcations[8] can be shown to exist. The sults concerning plane waves and their stability are discussed
corresponding calculations use center manifold and normah Sec. IV. In particular the modifications resulting from glo-
form theories and describe the instability of one and twobal coupling are emphasized. Results that describe the ion-
modes, respectively. These methods are well suited for thization instability in a low-pressure neon discharge are dis-
short positive column. In the case of a long column, wherecussed in Sec. V. The dependence of the parambterg
many modes become unstable simultaneously near the critbn the gas pressure is calculated also in Sec. V. Furthermore,
cal current, the description by an equation of the Ginzburgthe correctness of the predictions with respect to ordered and
Landau type becomes relevant. The complex coefficients diurbulent behavior, respectively, is verified by numerical cal-
this equation can by calculated from the basic equations usulations.
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Il. BASIC EQUATIONS N—N, M—M, T-To
. . L . u= , M= y U= )
The physical model equations we are using in this paper No Mo To
are based on a hydrodynamic description that takes into ac- (2.2
count the equations of continuity for ions, electrons, meta- _E-Ey . I
. . W= ’ J -
stable atoms, and the electron energy balance equation. This Eq lo

system is completed by Maxwell's equations describing the ] ) ) ] )

quasistatic electric field. In order to make this set of equa@nd define the dimensionless independent variables

tions analytically tractable, some physically motivated sim- E £2

plifying assumptions are used. Now we briefly sketch some 7/=—C27  t'=p —°t

basic approximations; however, the complete discussion can To 'To

be found in[6]. . . .
The assumption of quasineutrality reduces the number o‘f’her.eTO IS me_\asured in units of volts ?f’“" den_otes the

dependent variables by one. This assumption is justified bépop'“ty Of,th? lons. Furthermore,_we omit the prime on the

cause the wavelength of the considered ionization phenon%’—a”‘r’.Iblesz 't here_after for notat!onal convenience. Ther_1,

ena is much larger than the Debye radius of the plasma'énakmg.an expansion of_the no_nllnear terms up to t_he third

concerned. Motivated by experimental results in cylindricalo.rder W|th.respect to a!l field variables, the set of basic equa-

tubes, we describe a discharge with cylindrical symmetr)}'ons obtains the principal structure

and therefore all dependent quantities are functions of the g .. . _

axial coordinatez and the radius. By means of an averaging E(TX)z LX+No(X,X)+Nz(X, X, X)+--+, (2.3

with respect to the radial dependence our problem becomes a

one-dimensional one. This averaging is based on the assump.

tion of a radial dependence of the densities in terms of

zeroth-order Bessel function. After a rescaling of the basic

ereX denotes the field vector aridis a projection opera-

equations in terms of dimensionless variables, the time de- u 1 0 0 O
rivative of the electron energy balance equation is multiplied
by a small factor and is also neglected. Furthermore, we take K= m T= 0100
into consideration the external current circuit by the balance v |’ 0 0 0O
equation w 00 0 O

L ~S . . .

U:Ral(t)+j E(z1)dz, 2.1 Moreover,L X indicates the linear part
° é2u &%v
a— +mut psm+ [3—2 + nov
whereR, is the external resistanck, denotes the length of 9z 9z
the positive columnfE(z,t) is the axial component of the 92m
electric field, and (t) is the total current. D — + n4u+ ngm+ 7sv
In the next step one considers the homogeneous and Sta~; _ Jz*

tionary solutions that describe the equilibrium states of the 52U P o
positive column6]. Indeed such solutions exist for the sys- -8 ——-u—-hm-86—+rk——hp+w+j
tem of balance equations by compensating for the different 9z° Jz° 9z
production and loss terms. La&k(z,t), M(zt), T(zt), and Ju v
E(z,t) be the radial averaged densities of ions, metastable a5+u+ﬁ5+w—j

atoms, electron temperature, and the axial component of the 2.4)
electric field, respectively. The equilibrium state is desig- '
nated byNg,Mq,Tq,Eq.lo. We introduce the relative devia- andN,,N; stand for the quadratic and cubic nonlinearities,
tions from the equilibrium state respectively, which are given by

2 Ju dv v

J u
— +(a+B) = — + BU— + p1Uv + pou %+ paum+ pum+ pgm?
av 7 (at+B) 57 92 B e p1Uv + pov“+ps pav Ps

peUv + p7vz+ pgum+ pguvm-+ p10m2
2

- d%u %v u v v
2\ 9z

No=| —286v— —S(u+v)—— 83— —
2 105Z2 2(u U)(9ZZ 357 7

. . du
+jw+ K| E—MUU

_hzvz_h4um_ h5Um
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and
Uoumv+0'1UU2+ 0'203+ 0’3mU2+ 04vm2
0'5UU2+ 0'603+ 0'7mU2+ a'gvm2
_ ,0%U v au v v \? s o 3
N3: _510 22 _52uUE_ 31}55 2U E _h2UU _h3U
—hguvm—hgmy?
0.
|
Taking into account the definition of the currgnf6], Ginzburg-Landau—type amplitude equation represents the
normal form of the wave dynamics in the weak nonlinear
R ! region.
i=—gy| wdz (2.9
al JO

Ill. DERIVATION OF AN AMPLITUDE EQUATION

whereI:LEngo is the dimensionless length of the dis- | ot the discharge curreit be the control parameter and
charge andR=E,L/l, its equilibrium resistance, E@R.3 is | s critical value at the minimum of the instability curve.

a coupled system of partial integro-differential equations:the e shall consider a natural small parameter of the prob-
7, h, om, andp, are coefficients that result from the L?ms defined through

series expansion of the production and loss terms up to thir
order (cf. [6,7]). In contrast to the kinetic coefficients
@,B,6j,k, these parameters depend on the actual equilib- et=— (3.1
rium solutionNgy,Mq,Ty,Eq. The solutions of E¢(2.3) also ¢

depend on the boundary conditions at the ends of the positivgyic, js a measure of the distance from the bifurcation point.

column. From the experimental point of view it is not quité | orger o find the amplitude equation, we use the method
clear what boundary conditions have to be chosen to ap-

proximate a real positive column. On the other hand, Oupe;crlbeq if21]. The wave vectoK is expanded in a power
results in[6,7] have shown that the bifurcation behavior is S€"€S With respect te
almost independent of the special boundaries at least in the o
limit of long diS(_:harges. In_this contribution we use periodic X = z K@ = g XD 4 2% 4 . .. (3.2
boundary conditions and it also has the advantage that all a=1
calculations are simplified.

In the first step we are interested in the stability propertiesind, moreover, each of these terms is expanded in a Fourier
of the equilibrium discharge, i.e., we consider the linearizedseries by
system

oo

0 .. X@= > X@(r £)expi(knz— wnt). (3.3
—(TO=LX. (2.6) n=-o

A plane wave ansatz yields the dispersion relation that can be T ‘ \
solved by means of numerical methods. Figure 1 shows a se ] Lo
of instability curves(or neutral curvesof the p waves pa- 6.0 - :
rametrized by the pressum,. Below the actual curve the . vyt
positive column is stable. Crossing the curve by increasing R
the discharge currenty, a supercritical Hopf bifurcation =<', ;| \ \
takes placgcf. [7]) and one observes ionization waves. A — | Vi
characteristic property is the local minimum of the instability . by
curve at a critical wave numbé&g . More precisely, we have 7 \'\\ /5 po=133Pa
a two-dimensional manifold of local minima by variation of ~ 2:9 ] A v Po=160Pa
the pressurg, and the radius, of the discharge. ltiswell | N>—=" | Pe5213Pa
known that the wave dynamics in the neighborhood of the - S
local minimum can be well approximated by an amplitude 0.0 — T T T T T T T T
equation of the Ginzburg-Landau type. In order to find such 0.0 2.5 5.0 7.5 10.0

an equation, there are two essential assumpti@ghe in- K

stability curve near the local minimum is approximated by a  FIG. 1. Instability curves op waves parametrized by selected
parabola andb) the nonlinearity is given by the Hopf nor- pressure valueghe radiusro=1 cm andk is the dimensionless
mal form equation, i.e., by a third-order term. In this sense, avave number
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Herek,=nk; and w,=nw; are multiples of the basic pair
(w1,ky)=(w¢,ke), i.e., (w1,kq) correspond to the critical

mode that becomes unstable at the m|n|mumaof the instabily here Ok, indicates the critical point and the prime stands
ity curve. Furthermore, the Fourier coefficier§™ repre-  for the partial derivative with respect t&. The same expan-
sent weakly varying functions of space and time, i.e., theysion is used also for the remaining parameters. Substituting
depend on the stretched variables all these expansions into the basic equat@3) and equat-

ing the coefficients of equal powers ofleads to a hierarchy

of linear inhomogeneous equations. The evaluations are

wherec is a free real parameter, which must be fixed Con_straightforward but involve tedious algebra and therefore we
X feport here only selected results.

sistently in the course of our calculations. Because the wav
vectorX is a real one, the coefficient®) have to fulfill the
conditions

= ok, T Mlox g2+ V2nilox e*+---, (3.6

E=¢g(z—ct), (3.9

=g,

A. First order of perturbation theory

Because the Fourier modes form an independent system
(3.5 of functions, the first ordes® splits into an infinite system of
homogeneous algebraic equations, where the progarby

where the asterisk denotes the conjugate complex. As the lagtqces the interesting mode numbents0. In the case
step one has to take into consideration that the consiants —1 thjs system reads

h/, om, pn, D, andR depend on the actual discharge cur-
rent |, (see[6] for their definitions, i.e., if we go into the

Xy = (R

instability region, these parameters depend on the actual Q(ky,01)X{M=0, (3.7)
value ofe. This dependence can be approximated by a Tay-
lor expansion near the critical poink.( k) with the matrix operator
akf— m—iw; - 73 Bki_ 72 0
- 74 Dk%_ Me—iw; ~7s 0
Q(ky,w1)= 2 2 . (3.8
1_51k1 h4 h1_52k1_|Kk1 _1
—l—iakl O _|Bk1 -1
|
Nontrivial solutionsX{") exist for HereA(k;) andB(k,) are defined by
det)(ky,w1)=0=w; = wi(k;), @;eC. — BK2)(2+1i aky— 81K
1,071 1 1K1 1 A(kl)znl—ak§+(7’2 B 12(- 1 1 1),
The complex valued functiom, (k) is the dispersion rela- Opk1+i6,ki—hy
tion of the linear theory and the instability curvege Fig. 1 (3.1)

result from the condition Img,) =0. Note thatw; depends
also on the control paramet@.1) through»,, h,, o, pn,
andD. The corresponding eigenvector is given by

ha( 7]2‘3"%)

B(ky)= ot — 72" PR
Y Y,

1 For the modeX{" with n=2 one obtains similar systems as
)Z(ll)=d>(§ AYD, VD= Mo (3.9 Eq. (3.7), but now with a coefficient matrixX2(k, ,w,).
10 SinceQ(k,,,w,) =Q(nk; ,nw,;) the determinant of this ma-
Wio trix cannot be equal to zero. This means X4t for n=2

must be the trivial solution. The analysis of thee0 mode
requires special consideration because the intégrél does

not vanish. In[7] we have shown that the=0 mode is
stable for a sufficiently large external resistafite There-
fore, we setX{M=0 as well. The first-order perturbation
theory must be completed by the adjoint homogeneous prob-
lem. Taking into account the usua} scalar product of four-
dimensional vectors

where ®(&,7) is an arbitrary amplitude depending on the

stretched variables and the componenté?@f can be calcu-
lated by means of

—i wl—A(kl)
M :—!
10 B(kq)
h4M 10+2+ i C!kl_ 51k§
O 5K+ i 8k —hy

: (3.10

. 1. N
<Y|><>=|—, . Y1(&)X(€)dé,

W10: - 1—iak1—iﬁk1V10.
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where the dagger denotes the adjoint vedtsf=(YT)*]
andl’=¢l. The adjoint linear problem is

atv=o. (3.12
Its solutionV is easy to find as
1
Y S g | Mo
V:\P(f,T)Yad y Yad = ~ y (313)
VlO
\7\/10

with the components

B 7sM 10+ 72— BKE
Sk2—i8k;—hy

_iwl_A*(kl)
etk

10—

\7\/10: _\710-
A(k,) is defined by Eq(3.11) andC(k;) can be written as
ns(2+iak,— 6,K3)

Clky) = 74+ .
) =t e sk

In Eq. (3.13 the amplitude¥ (£,7) is an arbitrary function
of the stretched variables.
B. Second order
To this order the mode numbers=3 provide homoge-
neous systems that have only the trivial solution

K2-6, n=3.

AT IONIZATION ... 3797

0 90
+(9_k1

1 0P - Q) -
- * (D) (€8]
% O‘P 8§d§<Yadl(C&wl Y >
where the second factér| ) now is an usual Hermitian sca-

lar product becaus¥}), YV, andQ do not depend on the
stretched variables. In any case the integral will not be equal
to zero becaus& is an arbitrary function. Therefore, the
scalar factor must be zero

o:<v<;d> i(

Taking into consideration the formula

|

which can be found by differentiation of the first-order equa-
tion QY(M)=0 with respect tk;, one obtains

o0
+8_l(1

9 g

oKy

(9(.01 (76

7o vy
&kl (9(,01 ’

0=0 (3.17

(9(1)1 N A >
Oz(c— &—l(l)wgmw“b,

where 9Q/dw,=—iT is used andf is the projector in Eq.
(2.3). It is easy to show that the scalar product does not
vanish near the instability curve and therefore

. (9(.01

C_z9_k1:

Vg, (3.18
i.e., the free parameterintroduced in Eq(3.4) must be the
group velocity of the wave at the critical point. Inserting Eq.
(3.18 into Eq.(3.16), the explicit solution of the inhomoge-

On the other hand, we obtain an inhomogeneous equation fareous problen{3.16 is easy to find by taking into account

n=2,

Q(2ky,207) X2 = 9F,(XD), (3.14

where() is the same matrix as in E(B.8), but now with the

substitutionk; —2k; andw;—2w,. The inhomogeneit}f)z
depends on the first-order solutions. The explicit form of th

components is given in the Appendix. The ansXg’

=d2YP reduces Eq(3.14 to
Q(2ky,20) Y2 =F. (3.19

Because dél(2k1,2w1)¢0, this system can be solved by

means of Kramer’s rule.
Moreover, forn=1 one finds

(3.16

A comparison with the first-order equati@8.7) shows that
the homogeneous problem associated with(Bd.6 always

has a nontrivial solution. Consequently, the inhomogeneous

problem has nontrivial solutions if a Fredholm alternative

condition is satisfied. Since the adjoint solution is given by

Eqg. (3.13, the solvability condition for Eq(3.16 can be
written by means of the first-order solutions

e

Eqg. (3.17),
X =~ g 9w

5k (3.19

It must be emphasized that this is not the most general solu-
tion of the inhomogeneous problem because an arbitrary

term @YD) that solves the homogeneous equation can be

added. However, the “new” amplitud® cannot be fixed in
our perturbation theory up to third order. Nevertheless, the
term is important in a higher-order perturbation theory,
which we plan to show in a forthcoming paper.

The last equation of second order is related to rie0
mode. We find

A - RN (r >
9(0,0)x52>+——f wdE=d*DF (YD),
"Jo

Ral
(3.20
where
u? 0
(2)
m,
xe=l | A= D]
e 1
Wi -1
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and the components of the inhomogenébycan be found in
the Appendix. In order to solve E¢3.20 we make the an-
satz

R .. 11 >
XP=d* dY3+ I_’Jo O*O de Yy, (321

where the following vector components are used:

a b
Uja Ugy
a b
m
N 11 > 11
a__ b_
0o~ a ) YO - b (323
Vi1 V11
a b
Wi Wi

Inserting the ansatz into E@3.20 yields two systems of

inhomogenous equations for the determinatioYpfand Y9
as

—m —n3 —n2 O
~ - ~ —my —m6 —7m5 O
a_ =
Q(OIO)YO FO! Q(OIO) 1 h4 hl _1 ]
-1 0 0 -1
(3.23
and
“ R R
a
—7M1 T 73 M2 0
~ | M —me —7s 0
o h, h —1+R/R, (3.29
-1 0 0 —-1-R/IR,

Because dé(0,0)io, the solution of Eq.(3.23 can be
found by means of Kramer's rule. The componefit forms
the inhomogeneity of the second systé3r24) and this sys-

tem can be solved by a standard method too. Note that the
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where the vector€=E(Y®, Y@ ,Y3), H=H(YW), and
G=G(Y®,Y2,Yh) are defined in the AppendixT is the
projector of Eq.(2.3) and P is the matrix given by

. PR .
P:_F[Q(klawl)""lwlT”s:O,kc- (3.2
&

Since the corresponding homogeneous problefa Eq.
(3.7] has a nontrivial solution, we use the Fredholm solv-
ability condition as in Sec. Il B. Inserting the solutions

X1 X2 on the right-hand side and using the adjoint solu-
tion (3.13), this condition reads

1 (v

O:_
I"Jo

0D - .~
‘I’*{ — ——(YadlTY®)

P20 - Jwr = oa
—Y<1>> i ;;CI)(YSCHTY(”)

2
+ 1re Yy
ok3

2 agz ad

X

Q9 - S,
(9_|(1 (9_k1Y(l)> +(I)*q)2<Ygld)|(E+ H)>

dé,

D (v ) A
+|—,f O*d d&(YY|G)
0

where we have use@y'd)]|(aQ/3s2)Y®)=0, which can be

proved by differentiation of the first-order equatiéhy®
=0. Since this equation must be true for all functiochswe
obtain

- P P O
matrix A depends on the external resistaf,eand there is 0=———+ p<I>+ba—§2+c<I>*<D2+gl—,fo O* P d¢,
the possibility that det has zeros at selected valuesRyf. (3.27)
Indeed, such behavior is observed and we report on this in
Sec. V. Moreover, in the limiR,— Eq.(3.24 degenerates where the coefficients are defined by
to a homogeneous problem that only has the trivial solution
lim Y§=0. ! _i Py
R,—® 2 2
a 982 o 2 ki ook,
C. Third order
In this order it is sufficient to examine the=1 mode (YH(E+H)) (YIG)
only. We find =, === (3.28

. - L9 - 1320 P -
(3)— _T_w(), — (D)
Q(ky, 01)Xy T&Txl 2 k% €2 1
S T oQ 9 -
FPXD 4T, Tx@ i B O g

- - D[y -
+d>*d>2(E+H)+|—f d*P d¢ G,
"Jo

(3.25

(YGITY®) T (YRITY®)

Note that we have used some elementary manipulations that
are based on differentiation of E(R.17) with respect td,,
taking into account the dispersion relatian(k;) to obtain

the coefficienb. Of course, Eq(3.27) is an amplitude equa-
tion of the Ginzburg-Landau type modified by an integral
term. A similar term was found by Elmdd1] in a study
concerning the nonlinear and nonlocal dynamics of spatially
extended systems. Finally, we return to our original space
and time variables and introduce the amplitude function
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Of course, the instability curve?p, =b,(k—k.)? reproduces

s®(&,1)=AZY) the results of the linear theory near the critical pdaft Sec.

to obtain In). - o _ _ _
A nontrivial wave solution withR+#0 is obtained by in-
IA IA - PA - - Al serting Eq.(4.1) into the amplitude equatiof8.31). We find
—=—v —+82pA+b——I—cA*A2+g—J A*A dz
at 99z 972 I Jo 2p,— b, (k—k.)?
re= S P K (4.9
(329 —(etg) |

It must be emphasized that the four coefficigmid, ¢, and 2 2
g are complex valued, whereag is a real parameter. Let u=" pci+[bi(c, +9;) —byci](k—k¢)
) b=b ib ) ) (k_kc)(cr+gr) ’
=p,+ip;, =b,+ib;, c=c,+ic;, =g,+ig;,
P=PeIP ' ' ' o 97 (3_'30) i.e., the amplitudeR depends on the wave number, which
clearly shows the nonlinear character of this solution. A real
where the index means real part aridstands for the imagi- amplitude exists only if a supercritical bifurcatiow, (- g,
nary part of the complex coefficients. Then we can eliminate<0) takes place at the critical poiftf. [7]). In this case the

(4.5

the terms~p; and~g; by means of a phase rotation amplitude tends to zero at the neutral curve. Moreover, the
e wave propagates with a velocity different from the group
Z(z,t)=ex ie2pit+i %f f A*A dz dt A(z,t) velocity vg @s a consequence of the cpr_nplex coefficients of
' JoJo the amplitude equation. For real coefficients,p;—0) the
o difference vanishesu—0). From the experimental point of
and this yields view only stable waves can be observed and therefore we
must study this property of our solution. The stability against
oA oA . PPA small perturbations is described by the variational equation
IZ_UQE'FS prA+(br+|bi)F
z
ISA SAL d5A | b b 9?25A
Jt =&°Pr uﬂX (b, Ii)(?XZ

Al
+(cr+ici)A*A2+g,|—f A*Adz (3.3)
0

+(c,+ic;)(A?5A* + 2A* ASA)

Of course, one can eliminate the terrv by means of a
Galilei transformation. Moreover, scaling transformations +9,

are possible such that—1, c,— — 1, ande?p,— 1. In order
to discuss the limit®, —0 andc,— 0, respectively, we have ) ,
not performed this transformation, i.e., E8.31) is the form where §A(x,t) represents the small perturbation. Inserting

of the amplitude equation studied for the rest of this paper.th® solution(4.1) for A and taking into consideration the
complex conjugate variational equation by introducing the

complex two-dimensional vector

SA (1 A (!
I—f A* A dx+ I—f (ASA* + A* 5A)dx|
0 0

IV. WAVE SOLUTIONS AND THEIR STABILITY

This section deals with special stationary solutions of the S oA
amplitude equatioi3.31) and with their stability. In particu- SA* )’
lar, we look for wave solutions with constant amplitudes of
the type we obtain
A(z,t)=R expi[(k—ke)x+ o], (4.1) S [ & g\ -

Sy

ot X

br_2_(Cr+gr)R2+[u_2bi(k_kc)]
with X
2

=7— J d\~-
x=2=(vgtut, (4.2 biﬁ—ciszLZbr(k—kc)&)KSl

+R2CS, +

whereu and ¢, are free real parameters afdis the con-
stant wave amplitude. Note thatcan be considered as the ,al (1=

phase velocity of the plane wayd.1) in the reference sys- +R GTfosldX' (4.6
tem moving withvy. First we consider the trivial solution

R=0, which corresponds to the homogeneous stationar}llv

positive column of the discharge. It is easy to show that this here the vector§ and$, are connected by a unitary trans-

solution is unstable against perturbations of the form formation0(¢),
SA= 5Agexi(k—Ke)X—At] S,=U"4¢)S,
if ~ 1 ( exp(i ¢) i exp(i ) K
U = — i . i , = —+ — X’
e°p,>b,(k—k)2. (4.3 J2lexp—ig) —iexp—i¢) = dot (k7o)
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which depends on the phase of E4.1). The matrix opera-
torsK, C, andG are defined by

K 0 -1 “ 3¢c,+g, —¢G
=1 o) ©7 3, c¢+g/)’
A g O
=2 .
&2l

In order to find the solution of Eq4.6), we make the ansatz

(4.7

whereq is an arbitrary wave numbey#k—k. and )Z\? are
constant two-dimensional vectors. Because

1(l. 0 Iif
| Sidx= -
|fo ! eMx if

we have to distinguish between uniform= 0) and nonuni-
form perturbationsq+ 0), respectively. Fog=0 we get the
eigenvalues

S, (x,H)=eM[X cogqx)+Y sin(gx)],

q#0
q=0,

A1=0, )\2:2(Cr+gr)R2 (4.8
and the corresponding eigenfunctions
. c,+ic;+g .
_ |¢’ _ r I r )‘Zt |¢
oA\ =ie'?,  SA, —|Cr+iCi+gr| er'e'?. (4.9

8A,, is a pure phase mode, well known as the Goldstoné"

branch(cf. [22]), whereasdA,, represents a mixed ampli-
tude phase mode. In the limi{—0 the eigenfunctionSAk2

becomes the amplitude mode discussed by Elrbg}.
For nonuniform perturbationsy¢- 0) we find a quadratic
equation with complex coefficients

A2+ (ag+ib)N+(ag+iby)=0, (4.10
where
a1=2(brq2—CrR2),
b, =2q[2b;(k—k¢) —u],
(4.19)
a0=07| (bf+b{)a?—4bf(k—k;)?

b,c, +b;c; ) b2

+C—r(a1—2er) ~

_aghy b, 2

bo=—5- +2a(k—ko)[2(brci—bic,) g’ — cjay].
r

A necessary condition for stability (Re<0) of the constant
amplitude wavg4.]) is
a;>0. (4.12

This condition also arises in the limif—0 because

lima,=—2¢,R?,
q—0

limb;=limag=limby=0
q—0 q—0 q—0

and the corresponding eigenvalues are
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TABLE I. Possible bifurcations depending on the signs of the
parameterg, andc,+g; .

CaseA CaseB CaseC CaseD
c,+9,<0 c,+g,>0 c,+9,>0 c,+9g,<0
c,>0 c,>0 ¢, <0 ¢, <0
supercritical subcritical subcritical supercritical
A1(g—0)=0, A,(g—0)=2c,R2. (4.13

Thus we find the same discontinuils(q=0)+# \,(q—0)

as discussed by Elméd1], reflecting the fundamental dif-
ference between a partial integro-differential equation and a
partial differential equation. Since the sign af is deter-
mined by the parameters and (c,+g,) [cf. also Eq.(4.4)]

in the limit g—0, we find the four qualitatively different
regions listed in Table 1.

The case8 andC connected with a subcritical bifurca-
tion at the critical point need calculations up to fifth order to
saturate the instability. We expect that the system would se-
lect a new stable state, which would be described by higher-
order nonlinear terms in the amplitude equation, e.g., by a
term of fifth power of the modulated amplitude. According
to Eq. (4.13), the wave solutions would be unstable in case
A; however, as Elmefl1] has shown, this is correct for an
infinitely long system only. If the system has a finite length
I, a lower limit of the wave numbeq exists by gni,
=27/l and one finds a small window of stable solutions
ound the critical point.

In caseD we use a general calculation similar[28]. As
a consequence of E@4.12), the stability condition can be
written by means of the cubic polynomial

b,c,+bic;
P(al)zai a]_#
Cr
b;b,c;
+ bf—bf—z—'c: ')q2—4b,2(k—kc)2}
b,.c;—b;c c \?
_ Kk \2p2| g2 e T
16(k kc) br(q Cr alZCr>
(4.149

as

P(a;)> 0« stability. (4.19

In case D the waves are stable against arbitrary long-
wavelength disturbancdse., g—0) if

brCr+ biCi

lim P(a;) =4c?R* c

q—0

—2¢,R?

cf
1+—2

r

—4b?(k—k¢)? >0.

We finally find

e’p,>b,| 1+

2br<cr+gr>( +c_?) ket?

.C: 2
b,c,+bc; c

(4.19
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We expect that for finite systems{q,,) there are devia- 8.0
tions from the condition(4.16). For such systems the poly- I R -3 7~ R
nomial (4.14 must be analyzed by numerical methods; how-

ever, we have not performed such calculations because w 4 o |
are mainly interested in long discharges. Equat#i6) de- -
fines in (&,k) space the band of Eckhaus stable wave solu- T
tions. In contrast to the classical Eckhaus result, where the
curvature of the parabola at the critical point is three times
the curvature of the neutral curve, here we have a variable i
curvature depending on the external circuitdyyand on the .
plasma parameters loy,c;,b, ,b;. In the limit of vanishing  —4.0 —
imaginary parts one gets the result of Elnigt] for an am-
plitude equation with real coefficients and, on the other hand, |
for g,—0 (i.e.,R,— =) Eq.(4.16 reduces to the stable band _g ¢
of the complex Ginzburg-Landau equati@#]. The stability 10.0 30.0 50.0 70.0 90.0
band shrinks to zero if the denominatorc, + b;c; changes Ra[k(

its sign for a fixed sign ot,+g,. This is the well known
Benjamin-Feir instability region, which we shall characterize
by the parameter

0.0

FIG. 2. Dependence of the nonlinear coefficients on the external
resistanceR, . The parameters amg,=200 Pa,ro=1 cm, andL

=50.3 cm.
A= Mgo, (4.17 cientsg, andg; on the external resistande,. Remember
Cr that the coefficient; can be removed by a simple transfor-

) _ o ) mation[cf. Eq. (3.31)]. As expectedg, andg; tend to zero
where the equality describes the Benjamin-Feir boundary. | SR, increases. One notes two singular cases, ofFirst, at

this section we have discussed the stability of the constarg 55 10 we observe a discontinuity of that arises from

. . a r
amplitude waves only. We expect that the amplitude equaz‘c,gimension-2 bifurcation, which, of course, cannot be de-
tion (3.31)_a|so has solitary wave solut_|ons similar to the scribed by the amplitude equatidB.31). In this case not
hole solution and the shock-type solution of the complex, v qoes a wave solutiofd.1) bifurcate from the equilib-
Ginzburg-Landau equatioi25,28. On the other hand, j,n 4t =0, but also the homogeneons: 0 mode becomes

Elmer[11] has found solutions with spatially periodic ampli- sap1e(cf. [7]). Indeed, the discontinuity arises from a zero
tudes in the limit of real coefficients. In any case the solution

manifold of Eq.(3.31) requires further investigations. of the determinant dét [cf. Eq.(3.24] and the matrix\ just
describes the stability of the=0 mode[7]. In Sec. Il A we
V. DISCUSSION have assumed that the=0 mode is stabldi.e., Xgl)=0),

) ) . which is realized folR/R, sufficiently small. Therefore, the
~ Compared to our basic equati@h3), the amplitude equa-  amplitude equatiorf3.31) is applicable only for parameters
tion (3.31) is much simpler to handle. Special nontrivial so- that are located on the right-hand side of the discontinuity.
lutions and their stability can be discussed. Also numerical The second singularity appearscat-g,=0. Here the bi-
calculations can be executed very quickly and precisely. Alkyrcation changes from a supercritical to a subcritical one,
the information on the special plasma system is containegle  the corresponding codimension-2 bifurcation is a gener-
within the complex coefficientcf. Eq. (3.28 and the Ap-  alized Hopf bifurcation(cf. [7]). This case is realized &,
pendix. The dependence of these coefficients on the plasma gg ko) (cf. Fig. 2. In conclusion we note that the ampli-
parameters, e.g., on the presspgeor on the discharge ra- tyde equation3.31) may describe modulation phenomena
dius ro, is not easy to discuss because some intermediat§ear the instability border in the discussed plasma systems as
steps such as the solution of inhomogeneous systefns |ong as the external resistance is sufficiently large, i.e.,

Sec. Il By must be performed. g,/ —c,<1. For all sufficiently small values df, +g, [i.e.,
Inserting the ansatz ¢, +9,=0(c?)] one has to taken into account additional
~ terms in the amplitude equation, such as nonlinear gradient
A(z,t)=Aq(t)exdi(k—Kke)(z—vg4t)] terms, a term with the fifth power of the modulated ampli-

tude, and additional integral terms. The corresponding class
into Eq.(3.29, one finds the Hopf normal form equation for of degenerate bifurcation problems is discussed by Eckhaus
a single oscillating modé\(t), which contains no deriva- and loosg28]. The remarkable feature of this study is the
tive and no integral term. The Hopf parame(ee., the co- phenomenon of strong pattern selection, which we have ex-
efficient of the nonlinear terfAy|?A,) at the critical pointis  perimentally observed in a neon glow discharge as [28).
given by the sunt+g. We have calculated this parameter The calculation of the additional terms in the degenerate case
for a neon discharge of pressupg=200 Pa, tube radius is in progress.
ro=1 cm, and lengtl. =50.3 cm. A comparison with the To discuss the influence of the global coupling term on
results given inf7] yields the correct value of the Hopf pa- the plasma system it is important to know the dependence of
rameter. Discussing the various coefficients in 831, we  the coefficients in Eq(3.31) on the plasma parameters. Us-
state that onlyg, andg; depend on the resistanBg . There- ing the equations of Sec. Ill, this task can be solved. Figure
fore, Fig. 2 shows the dependence of the nonlinear coeffid shows the curve of the realizéxl/b, andc;/c, values by



3802 B. BRUHN, B.-P. KOCH, AND P. JONAS PRE 58

2 . 2.0
Phase Turbulence —-;- B
: —1.0 ,«
L | /
15+ 7
I ] s |
Amplitude Turbulence r b, /b, —4.0 - /:/ /'/,"' '\,‘
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-
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: FIG. 4. Range of stable wave numbers and its variation with
' b; /b, for different values ofg,/c, and fixedc;/c,=—6.9 and
: 2 -

e°p,/c,=1.

BF-Line
1200 Pa

L=50 cm and the radius a=1 cm, respectively. In all

05+ Spatiotemporal - .
Intermittency .. calculations the control parametés was chosen slightly
above the critical currerit.. In particular the statements re-
. No Chaos . .
.’ lated to the appearance of turbulent behavior, which are

based on the calculations of the coefficients of the Ginzburg-
Landau equatioii3.31) and are shown for different pressures
in Fig. 3, are checked. Inspecting this figure, a very general
prediction with respect to the full systef@.3) can be made:

FIG. 3. Coefficients of the amplitude equation and the corre-The behavior should be more turbulent if the pressure is
sponding solutions for pressure variation in the interval fromraised. This is what is observed in experiments near the in-
133 Pato 718 Paf=1 cm and the BF line is the Benjamin-Feir stability border{5]. This is also confirmed by the numerical
instability boundary. results. For pressures of 133 Pa and 200 Pa, respectively,

only traveling waves are observed. Starting at different initial
varying the gas pressum®, and holding the tube radiug, conditions, the waves with the mode numbers
=1 cm constant. To make the representation more compre=32 (133 Pa) anah=27 (200 Pa), respectively, are the
hensible, we have added the known border lines separatingnly attractors. On the other hand, at 718 Pa only irregular
the four regions of different behavior of the CGILE7], i.e.,  behavior is observe(cf. Fig. 5. Figure %a) shows the in-
in the case oR,— the intermittency, bichaos, and ampli- volved space-time diagram of the charge carrier density
tude turbulence regimes are visited successively by enlarging(z,t). To omit possible transient structures the diagram
the pressure. starts only at=15 000 and ends at= 30 000. To show the

In Sec. IV we have calculated the influence of the integrairregular patterns more clearly and to compare with the be-
term on the properties of harmonic waviee Eq.(4.1)]. havior of Eq. (3.3) the complex modulation amplitude
According to Egs.(4.4) and (4.5), a larger value ofy, en-  A(zt) is extracted with the help of the complex demodula-
larges the amplitudR and the phase velocity. The latteris  tion techniqug30]. Furthermore, the data are transformed to
correct for sufficiently small wave numbers only. Whereasa coordinate system moving with velocity,=—0.291,
the Benjamin-Feir stability limit is not altered, the width of which is the group velocity at the critical point. In Figgbb
the Eckhaus range of stable wave numbers is magnified by and Hc) the modulus and the phase gradientAdfz,t) are
lowering of the external resistance. This can be seen in Figepresented. The zigzag motions of localized structures are
4, where the gap of stable wave numbers and its variatioclearly visible. Their velocity strongly deviates from the
with b; /b, is representeficf. Eq. (4.16]. Note that the glo- group velocity. In Fig. &) these coherent structures are seen
bal term in Eq.(1.1) preserves the intrinsic phase invarianceto be unstable. The phase gradient steepens until a phase slip
of the CGLE. Probably this is the cause for the absence ofamplitude defegtappears and new left and right moving
the different phenomena observed in the case of other globabjects develop. These objects resemble the homoclinic
terms[20]. holes investigated recently by van Hedlas).

To verify the most important assertions of this paper, we Looking at details, one observes serious differences be-
have made some numerical calculations starting from théween the qualitative behavior of solutions of £g8.31) and
basic equation$2.3). Strictly speaking, we made use of the the basic equation&.3), respectively. For example, in the
completed form of Eq(2.3), where the nonlinear production bichaos regime of Eq3.3) (i.e., at 532 Pa) only quasi-
and loss terms are taken into account completely, i.e., withperiodic solutions are observed. Amplitude turbulence and
out any power series expansipn]. To facilitate the com- phase turbulence could not be detected in this regime. Fur-
parison with the theoretical predictions periodic boundarythermore, for lower pressures, as mentioned above, only
conditions were used. The length of the column was fixed atraveling waves with one selected mode appear. No intermit-
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—e
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FIG. 5. Space-time diagram of the charge carrier density in different representations. The parametpgs- 226 Pa, |,
=0.778 mA,L=50 cm, andro=1 cm. (a) Densityu(z,t) and(b) and (c) modulus and phase gradient, respectively, of the data after
complex demodulation and transformation to a system moving ajth

tency is found. These strong pattern selecfi®8] of travel- S1=e(ya—a*), &,=e(yB—B*),
ing waves is also observed in the experiments in this pres-
sure rangd29]. We strongly suppose that the discrepancies 53=208,+68,, b6,=€y—PB, k=€,

observed can be diminished if terms of higher order, i.e.,
nonlinear gradient terms and the fifth-order td* A, are  where
considered. Moreover, we have done many numerical calcu-

lations at different pressures for short and medium lengths of «=0.842, p=0.281, y=1.476,
the positive column. We plan to report on the results and
their comparison with experiments in a forthcoming paper. a*=0.956, B*=1.275 €=1.05.

In second-order perturbation theory we have used the vectors
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men.” F2(2)=peViot p7Viet psMigt poVioM 10+ p1oMio,
(A1)
APPENDIX: DEFINITIONS F2(3)=[(28,+ 8,4 83)kf —h1]Vyg
In this appendix we list some of our abbreviations and +(268,k3—hy) V23— haM 19— hsV M1

definitions. We begin with the definition of the coefficients
in Eq. (2.3, Fa(4)=i(a+ B)kiVigt Wi,
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and for vectorlzo,

Fo(1)=p1(Vio+Vip + pa(V1ioM 1o+ VigM 10)

+2p,ViViot p3(M g+ Mg +2psM oMy,

Fo(2)=pe(V1ot Vip) +2p7VigViot pg(M 1o+ MTp)
+po(VigM ot VM 10) +2p10M 1M 10,
(A2)
Fo(3)=—h;(Vio+ Vip —2h,V1Vip—hy(M 1o+ Mo

—hs(V1oMIo+ VigM10),

Fo(4)=iki(a—B)(Vig— Vi + Wigt Wiy.

Next, we list the vector components éf I:|, andG. These
vectors are very important since they determine the nonlinear
coefficients of the amplitude equation by E§.28. We de-

note the components of the solution vect§?’ in Eq. (3.15
by

Uzo
- m
V@ _ 20
2
U20
Wao

Then, using Eqs3.9) and(3.22 one finds

E(1)= aki(v0— 2Viguo— vy
+ BKE(— 2050+ VigUz0— U1 Vi0)
+p1(v i+ UL Vigt UsViptH v20)
+2p2(Vi 11+ Vi 20 + 2ps(M1omi; + MIgMyo)
+ pa(miy+ug; Mot UsgM ot M)

+ pa(Viomi+ v 1M 15+ v20M Tg+ VigMyo),

E(2)=pe(v]1+Vigulst UzoVigt v20)
+2p7(Vigaot+ Viw iy
+ pg( MUzt Myt mi;+ Mygufy)
+2p10(M 1o+ maM o)

+ po(Vigmis+ v 1Mo+ MTw 20+ VigMyo),
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E(3)=281K3(v31+ v+ 4VigUao) — 283kT (v 20+ UsoVTo)
+ 8,KE(4v 25+ UV 5o+ UG,V 1)
2h,) (Vi 51+ Vi 20

—hy(vf+ Viguli+ Viguzt v

+(5ki—

—ha(mi;+ M gufs+ UsgM ot M)
—hs(v2gMTg+ VigMagt VigMi+ M),
E(4)=iakq(v];—va0t2VigUz0)
+iBky(UT1Vig+ 20 20— UzV710)
+ Wi+ Wi+ Waot UzoWio
and the components f are given by
H(1) = 0o(M1Vigt MiVig+t M 1V1g) + 01(2VigVio+ Vi)
+30,ViViot 03(2M 1V iVig+ M3Vio)
+04(2V1oM{M 10+ ViM o),
H(2)=05(2ViV1ot Vig) + 07(2M10ViV 10+ MiVio)
+ 30’6V Tot 08(2V MM 10+ VigM 10)
H(3) = (81ki—hy) (2V1Vig+ Vo) — 33KV,
—hs(VigM g+ ViM 101 V1M 10) +25,K5 V3,
—hg(2M 10V 1oViot+ MioVio) — 3hsVigV iy,
H(4)=0.
Moreover, forG one finds
G(1)=p1(vhy+ U Vi0) +2p,Vi0 51+ pa(miy+uiM o)
+pa(VigMiy+ 051 M 10) +2p5M 1gmb; — akio;
— BKEV 105y,
G(2)=pe(v 1+ Viguhy) +2p7V10 51+ pg(Miy+Muly)
+po(VigMey+ My dy) +2p10Mgmb;
G(3)=28K5v 51+ 8KiV1g(Uf1+v8y) —hy(vh1+Vigufy)
=2,V 51— ha(mRy+ M yqufy)

—hs(Vigniy+M?y)
R a b H
- R_a(W11+ Wi ) (WiotikkiVig),
_ b b b b
G(4)=iakqvy;+ipKiugVigt Wy +Wigly; .
Using the results of Sec. Il B, it is easy to show that

lim G=0.

Ry—
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